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Demosaicing Methods for Snapshot Spectral
Images. Part II: a Filtering-Based Framework
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Abstract—This paper presents novel unmixing and demosaic-
ing methods for snapshot spectral imaging (SSI) systems utilizing
Fabry-Perot filters. Unlike conventional approaches that perform
unmixing after image restoration or demosaicing, our proposed
methods leverage Fabry-Perot filter deconvolution and extend the
“pure pixel” framework to the SSI sensor patch level, enabling
improved unmixing accuracy and introducing the concept of
localized spectral purity. Through extensive experimentation on
synthetically generated data and real images captured by SSI
cameras, we demonstrate the superiority of our methods over
state-of-the-art techniques. Furthermore, our results showcase
the effectiveness of the proposed approach over our recently
proposed joint unmixing and demosaicing method based on low-
rank matrix completion.

Index Terms—Snapshot Spectral Imaging, Unmixing, Demo-
saicing, Low-Rank Approximation, Sparsity, Deconvolution.

I. INTRODUCTION

SNAPSHOT spectral imaging (SSI) is a technique used in
hyperspectral imaging (HSI) that aims to acquire spectral

information from a scene by associating each spatial pixel
with a specific spectral band [1]. Traditionally, HSI involves
wavelength-scanning, point-scanning, or line-scanning meth-
ods, which require repetitive measurements and can be time-
consuming. Recent advancements have introduced snapshot
spectral cameras that employ Fabry-Perot filters (FPf) or com-
pressive coded-aperture snapshot spectral imagers (CASSI)
to overcome these limitations. In this study, our focus is on
snapshot mosaic cameras using Fabry-Perot filter technology
[2], [3]. Fabry-Perot filters (FPf) are widely used for spectral
filtering in optical systems. Snapshot mosaic cameras incor-
porate FPf monolithically on CMOS image sensors, allowing
for decreased stray light, increased sensitivity, and faster
acquisition times. The filters in these cameras are designed
with varying cavity lengths for each pixel in a filter cell,
arranged in a mosaic pattern replicated across the sensor
surface as shown in Fig. 1. This per-pixel layout enables the
capture of a complete scene without the need for image dupli-
cation. Unlike traditional scanning methods, snapshot mosaic
cameras offer several advantages, including fast acquisition
times, compact size, and portability. However, they present a
trade-off between spatial and spectral resolution due to the
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association of each pixel with a specific spectral band. In
particular, the SSI camera manufacturer provides a pipeline to
process such data, which includes an important stage known
as “demosaicing”. Traditional demosaicing techniques utilize
spatial and/or spectral correlation and use methods such as
Weighted Bilinear interpolation (WB) [4], Iterative Spectral
Difference (ItSD) [5], pseudo-panchromatic image (PPID) [6],
Binary Tree-Based Generic Demosaicing (BTES) [7], graph-
regularized low-rank matrix completion (GRMR) [8], as well
as structural and adaptive nonlocal optimization (SaND) [9].
Recently deep learning methods have emerged as alternatives
[10]–[13].

After the 3-D hyperspectral image has been reconstructed
from the 2-D SSI data, we can employ any post-processing
technique of choice. In particular, the unmixing process that
involves extracting the spectral signatures of all the endmem-
bers which are present in an observed scene. Specifically,
popular unmixing methods operate under the assumption that
for each endmember, there is at least one spatial pixel where
the corresponding material exclusively exists. This implies that
the observed spectrum in such a pixel matches the endmember
spectrum. The most widely used algorithms are the vertex
component analysis (VCA) [14], N-FINDR [15], the pixel
purity index (PPI), and the sequential maximum angle convex
cone (SMACC) [16]. Sparse component analysis (SCA) is one
of the main approaches to Blind Source Separation (BSS). It
detects single-source zones by exploiting the source sparsity
properties in different representation domains [17]. They are
categorized into 1-sparse and q-sparse methods (with q ≥ 2)
[18], [19].

In the first part of this paper [20], we investigated the
behavior of joint demosaicing and unmixing methods for
snapshot spectral imaging (SSI) systems. In addition to a
naive approach—straightforwardly derived from Weighted
Nonnegative Matrix Factorization (WNMF)—we proposed
two novel demosaicing methods, i.e., KPWNMF (K-means
Patch-based Weighted Nonnegative Matrix Factorization) and
VPWNMF (VCA Patch-based Weighted Nonnegative Matrix
Factorization). These methods incorporated the assumption of
sparse abundances within sensor “patches,” where a single
endmember primarily dominates each patch. The methods
employed rank-1 WNMF computations, a specialized single-
source confidence measure, endmember extraction, and abun-
dance estimation. However, they diverged in treating scenarios
involving multiple endmembers, providing distinct solutions
to address such cases. We demonstrated that starting the
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unmixing process directly from the raw images yields superior
unmixing and demosaicing enhancements. Building upon this
finding, in this second part of the paper, we deeper analyze
the pipeline to restore the HSI data cube and we explore
the utilization of the harmonic response matrix of Fabry-
Perot filters (FPf) for joint unmixing and deconvolution. Our
objective is to showcase that the integration of joint unmixing
and deconvolution techniques leads to enhanced unmixing
and demosaicing outcomes compared to the joint demosaicing
and unmixing approaches, as well as the traditional 2-stage
methods involving separate demosaicing and unmixing steps.

Furthermore, the current image processing pipeline of snap-
shot images involves applying a correction matrix after de-
mosaicing in order to remove some unwanted harmonics.
In contrast, our proposed approaches obviate the need for
applying the correction matrix and initiates the deconvolution
process directly from the raw SSI image. Through this novel
methodology, we aim to demonstrate the efficacy of our
approaches in achieving improved unmixing and demosaicing
results while simplifying the overall processing pipeline.

To evaluate the performance of the proposed methods,
we accomplish experiments on SSI simulations derived from
synthetic images. Additionally, we process real SSI images
taken from Hyko 2 dataset [21].

It should be noticed that a preliminary version of this work
was published in [22], where one of our proposed methods
was introduced. However, this paper differs from [22] as
follows. We propose a second approach using different abun-
dance assumptions. Moreover, while the work in [22] mainly
focused on the endmember estimation, we here also explore
the abundance estimation and investigate both the demosaicing
and unmixing enhancement of our proposed methods.

The remainder of the paper is organized as follows. Sec-
tion II presents the snapshot images processing pipeline and
the related work in deconvolution for hyperspectral imaging.
We then introduce the joint unmixing and deconvolution
problem in Section III. Section IV introduces our proposed
methods, whose performances are investigated in Section V.
Finally, we conclude our discussion and introduce future
directions for research in Section VI. A table of notations used
throughout this paper is provided in Table I for clarity and ease
of understanding.

TABLE I
TABLE OF MATHEMATICAL NOTATIONS

Notation Description
Y Matrix
Ŷ Estimated Y matrix
H Scaled convolution matrix
g Column vector
gil the (i, l)-th element of G
◦ Hadamard product
f Row vector
yT Transpose of the vector y
‖ · ‖2F The Frobenius norm
≈ Approximately equal
‖ · ‖22 Squared Euclidean Norm
� Much greater than
, Is defined as or is equivalent to

F ,X Pool of the spectra

Fig. 1. The SnapShot SWIR camera from IMEC using a mosaic pattern of
16 SWIR filters (Source IMEC).

II. RELATED WORK

In order to fully exploit the advantages of snapshot spectral
imaging and derive precise and reliable information from
the acquired data, several essential processing steps must be
undertaken. These processing stages, including demosaicing,
spectral correction, and unmixing, play a critical role in
refining the hyperspectral data’s quality, spatial resolution,
and interpretability. Given our introduction of demosaicing
and unmixing in the first part of this paper [20], in this
discussion, we delve into the significance and methodologies
of spectral correction and deconvolution, highlighting their
impact on harnessing the benefits of SSI imaging and enabling
the analysis of hyperspectral data.

Since SSI cameras associate each spatial pixel with a
specific spectral band—thus introducing a critical trade-off
between spatial and spectral resolution—a post-processing
technique known as “demosaicing” must be applied to estimate
the entire HS data cube and conserve the spatial resolution.
The straightforward method for generating the entire hyper-
spectral cube from a single snapshot image involves grouping
the suitable number of pixels with a corresponding reduction in
spatial resolution. Nonetheless, demosaicing aims to create the
complete hyperspectral (HS) data cube and preserve the spatial
resolution. To achieve this, several techniques have been
proposed to estimate the missing information, which can be
classified into ”traditional” methods and deep learning-based
strategies. Most demosaicing methods—including our joint
unmixing and demosaicing approaches proposed in [20]—
primarily focus on handling snapshot images captured using
ideal filters, followed by subsequent spectral correction steps
to address filter impurities.

Ideally, a Fabry-Perot filter (FPf) would efficiently transmit
light within a narrow spectral range to the sensor while block-
ing light outside this range. However, FPf exhibit additional
harmonic responses around each desired wavelength in prac-
tical implementations, as shown in Fig. 2. Moreover, snapshot
spectral cameras encounter various impurities, such as spectral
leaking, spectral shifting and CMOS imager variability. There-
fore, they require pre-processing and post-processing steps to
ensure high-quality images [21], [23]–[25].

Firstly, the incident light is conditioned using an appropriate
rejection filter in front of the sensor to block all wavelengths
outside the active range. Hence the filters will remove spectral
leaking and unwanted second-order responses outside the
sensor’s active range [8], [24]. Secondly, dark level correction
(or bias correction) is applied by subtracting a dark image
from the SSI image to remove sensor’s inherent noise and
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offset. The dark reference image is usually taken when the
lens is closed. Although rejection filters successfully block
wavelengths outside the sensor’s active range, they cannot
remove some unwanted responses because they fall in the
sensor’s active range. These wavelengths contribute to the
filter’s total response and will be present in the captured
data. Their contribution to the signal can be suppressed in
the spectral correction step by using the spectral correction
matrix, which is computed for each combination of sensor
and optical components—i.e., rejection filters, light source,
etc—and which is provided in the sensor calibration file
[23], [26]. The correction matrix C is scene-independent and
derived by minimizing the discrepancy between the actual
band response—also called response matrix denoted as H—
and the desired or ideal band response, denoted as H ideal, i.e.,

min
C
‖H ideal − C ·H‖2F , (1)

where ‖·‖2F denotes the Frobenius norm. Applying the cor-
rection matrix requires the calculation of the reflectance using
a white reference [24]. However, Vunckx and Charle [25] have
recently proposed an approach to enable spectral correction of
raw, dark-corrected data.

Notably, the response matrix, which forms the foundation
of our proposed framework, can be considered the model of
the sensor and is the primary source of information about the
filters on the sensor. Specific filter characteristics, such as first
and second-order responses and the full width of the response
peaks at half the maximum of the peak (FWHM), are extracted
from the response matrix. Multiplying this matrix with an
irradiance spectrum results in the simulated sensor response.
In our experiments, we utilize this response matrix to simulate
real-world scenarios, enabling us to evaluate the performance
and effectiveness of our approach under realistic conditions.

Angularity correction proposed by Goossens et al. [27]
addresses variability caused by incident light angles that can
cause undesired spectral shifts of the measured spectra. It
requires knowledge about the f-number of the lens and the
distance between the lens’s exit pupil and the image sensor.
Then the shift in wavelength can be calculated for each
position of the filters. Finally, the lens can also cause a
spatially variant pixel response due to vignetting, and the
pixel response of a CMOS imager can vary slightly across
the sensor. Non-uniformity correction is applied to overcome
these issues by dividing the reconstructed cube point-by-point
by a non-uniformity correction cube. The computation of
the latter requires an extra calibration measurement to be
performed in the lab with an integrating sphere or a white
reflectance tile and the whole system as (it will be) used later,
i.e., with the same lens and f-number [25]. Fig. 3 shows the
processing pipeline of the SSI images with the steps mentioned
above. It is important to note that some of these steps are
optional and can be adapted based on specific requirements.
For instance, using white reference and black reference is
essential to obtain reflectance values. However, these steps can
be deleted if radiance values suffice for the intended analysis.
Similarly, angularity correction has its applicability tied to the
availability of the f-number of the optics. This correction is

Fig. 2. The spectral response of the 25 spectral filters of the 5 × 5 mosaic
Photon Focus SSI camera covers the wavelength range from 400 to 1000 nm.
[28].

most relevant for fixed lenses, excluding those with autofocus
mechanisms. Furthermore, the correction for non-uniformity in
pixel response could be postponed after the unmixing process
as it does not influence abundance estimation.

Deconvolution methods in hyperspectral imaging aim to
mitigate the blurring effects and enhance spatial resolution. By
estimating the imaging system’s point spread function (PSF)
or impulse response, deconvolution algorithms aim to reverse
the blurring process and recover sharper and more accurate
representations of the original scene [29], [30]. This can lead
to improved spatial details, better discrimination of spectral
features, and enhanced overall image quality. Furthermore,
coupling deconvolution with unmixing was found to have
better unmixing improvements. In [31], the authors proposed a
sequential approach to unmix hyperspectral data that has been
blurred during acquisition. The authors analyzed the effects
of the observation process on the minimum-volume simplex
(MVS) enclosing the data and showed that a deconvolution
step is necessary to unmix the data correctly. While Jiang et
al. [32] proposed a new approach called DecGMCA to jointly
solve the blind source separation (BSS) and deconvolution
problems based on sparse signal modeling and efficient al-
ternative projected least square algorithm. They highlighted
the gained enhancements on the unmixing by jointly solving
BSS and deconvolution instead of considering these two
problems independently. In [33], the authors proposed a joint
unmixing-deconvolution (JUD) algorithm that combines super-
vised linear unmixing and deconvolution problems to increase
the resolution of the abundance maps for industrial imaging
systems. They proposed extensions to the algorithm based on
Tikhonov regularization and block Tikhonov criterion.

III. PROBLEM STATEMENT AND ASSUMPTIONS

In this section, we provide a definition of the SSI acquisition
system and outline the problem that we aim to address. The
SSI camera acquires a two-dimensional image consisting of
m×n pixels for each exposure, where m and n represent the
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Fig. 3. Processing steps as required by the camera manufacturer to ensure high-quality snapshot spectral image restoration and unmixing.

pixel counts in the horizontal and vertical dimensions, respec-
tively. Additionally, it is assumed that the camera observes
k spectral bands. In practice, the SSI technology relies on a
mosaic of Fabry-Perot filters comprised of

√
k ×
√
k patches

that are replicated across the sensor surface.1. In an ideal
scenario, an FPf permits only light within a minimal spectral
range to reach the sensor while blocking light outside this
range. However, in real implementations, these filters exhibit
additional harmonics around each wavelength of interest, as
illustrated in Fig. 2. Fortunately, these filters are known and
provided by the camera manufacturer [3].

For the rest of this section, our focus will be on a single
patch of Fabry-Perot filters. Denoting xi(λi) as the i-th
SSI pixel in the patch, which theoretically captures spectral
information at λi nm, we have:

xi(λi) =

k∑

j=1

hi(λj) · yi(λj) + ωi, (2)

1Typical values of k are 16 or 25, such that the patch is of size 4 × 4
or 5 × 5, respectively. Moreover, m and n are both proportional to

√
k.

Finally, as the patch size directly equals the number of wavelength bands, k
is consistently used to denote the two elements.

where hi(λ) represents the Fabry-Perot filter associated with
Pixel i, yi(λ) is the actual spectrum intended to be observed
by Pixel i, and ωi denotes some additive noise. Furthermore,
assuming a linear mixture model, the observed spectrum can
be expressed as a combination of endmembers, i.e.,

yi(λ) =

p∑

l=1

gilfl(λ), (3)

where p represents the number of endmembers in the observed
scene, fl(λ) signifies the spectrum of the l-th endmember, and
gil is the corresponding abundance proportion in Pixel i, i.e.,

∀l = 1, . . . , p, 0 ≤ gil ≤ 1 and
p∑

l=1

gil = 1. (4)

By combining Eqs. (2) and (3), we obtain

xi(λi) =

p∑

l=1

gil




k∑

j=1

hi(λj) · fl(λj)


+ ωi. (5)

In this paper, we aim to estimate the p endmembers fl(λ) with
their associated abundance coefficients gil using Eqs. (5).
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IV. PROPOSED METHODS

We now introduce our proposed methods. We actually
propose two novel methods for SSI data exploiting the filter
characteristics and using the same sparsity assumptions intro-
duced in [20]. The latter are briefly recalled in the subsections
below.

A. Clustering and Filtering-based Proposed Technique

We now introduce our approach and assumptions to solve
the problem described in the previous section. Based on
Eq. (2), the set of k observed SSI values and the k complete
spectra of the patch can be expressed:

x ,



x1(λ1),

...
xk(λk)


 , Y ,



y1(λ1) . . . y1(λk)

...
...

yk(λ1) . . . yk(λk)


 . (6)

where x is defined as a k-dimensional vector representing
spectral values of one SSI patch across k wavelengths, while
Y is a matrix representing the full spectral values for this
patch. Each row in Y corresponds to a different pixel, and each
column represents a specific wavelength. The dimensions of Y
are k× k, where the first dimension represents the number of
pixels and the second represents the number of spectral bands.

Estimating Y from x and Eq. (2) is an ill-posed problem.
Therefore, we consider the same set of assumptions that we
presented in the first part of this paper [20].

Assumption 1 (Pure patch assumption). For each endmember,
there exists at least one sensor patch where only this endmem-
ber is present.

In a patch where the assumption 1 is verified, the matrix
Y is approximately rank-1 and can be replaced by a vector
y = [y(λ1), . . . , y(λk)] corresponding to an endmember. By
noting ω , [ω1, . . . , ωk]

T the vector associated with the noise
in the patch and

H ,



h1(λ1) . . . h1(λk)

...
...

hk(λ1) . . . hk(λk)


 (7)

the matrix of Fabry-Perot filters (response matrix), Eq. (2)
can be written as

x = H · yT + ω, (8)

For each patch, we first aim to recover a tentative spec-
trum y from Eq. (8). In practice, as the matrix H can be
ill-conditionned2, we aim to solve a penalized optimization
problem, i.e.,

min
y≥0

1

2
‖x− H · yT ‖22 +

α

2
‖D · yT ‖22, (9)

where D is a square matrix that accounts for the discrete
derivative of the spectrum y, and α represents the penalization

2For example, the 5× 5 filter matrix H using real FPf in [8] has two rows
which are almost null.

term. Eq (9) is a quadratic problem which can be rewritten as
[34]

min
y≥0

1

2

∥∥∥∥
(
x
0

)
−
(

H√
αD

)
· yT

∥∥∥∥
2

2

. (10)

In practice, the error value ‖x − H · ŷ‖2—where ŷ is the
estimated spectrum obtained from Eqs. (9) or (10)—provides
a measure of rank-one approximation. Indeed, if in Eq. (8)
the content of Y can be approximated by a single vector, then
‖x−H· ŷ‖2 will be very low. Specifically, this means that only
one endmember is present in the patch, and Assumption 1 is
satisfied. However, if the error value is high, this means that
multiple endmembers are present in the patch, and we must not
detect the patch as pure. This brings the second assumption.

Assumption 2. In the patches where several endmembers are
present, their abundances significantly vary over each patch.

As a consequence, when several endmemeber are present in
the patch, the error value ‖x− H · ŷ‖2 will be high.

Such an error can thus be seen as a “single-source con-
fidence measure” as proposed in KPWNMF. We thus derive
from each patch one noisy estimation of one “true” endmem-
ber. The recovered spectra with low approximation error are
collected and arranged in a matrix denoted F . Then the final
endmembers are estimated using Selective K-means or K-
medians proposed in [35], initialized with K-means++ [36]3.

Once the actual endmembers are derived and stored in the
matrix F , a final step involves estimating the abundance in
each pixel of the SSI image. We adopt the low-rank matrix
completion framework introduced in [20] for this purpose. At
the patch level, we consider the observed values yi(λi) to be
part of a partially observed k×k matrix Y . Denoting S as the
matrix of endmembers convolved by H, we obtain the matrix
form of Eq. (5), i.e.,

H ◦ Y ≈ H ◦ (G · S), (11)

where G is the matrix of abundances in the considered patch,
and H is a scaled version of H . In practice, we initialize
G through least-squares regression using F and the patch
demosaiced by Weighted Bilinear interpolation (WB) approach
[4]. Subsequently, we aggregate all these matrices Y to update
the abundance matrix using Naive WNMF in [20] globally.
The whole strategy is provided in Algorithm 2.

B. Method with Relaxed Abundance Sparsity Assumption

We now introduce our second approach. It may be seen as an
extension of the previous one as it also assumes Assumption 1
to be valid. However, it significantly relax Assumption 2 which
is replaced by the following one.

Assumption 3. In the patches where several endmembers are
present, their abundances may or may not vary over each
patch.

3Similarly to KPWNMF, FPKmeans utilizes K-medians clustering with the
`1 norm. The clustering process is repeated 10 times, and the solution with
the lowest within-cluster sums of point-to-centroid distances is selected as the
optimal solution.
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This assumption states that in the patches where multiple
endmembers are present, we do not require any constraint
on their abundances. Consequently, the approximation error
‖x−H·ŷ‖2 tends to be low when a patch is pure (in accordance
with Assumption 1) or when the abundances of multiple
endmembers remain consistent within the patch. However, the
approximation error increases significantly in patches with
multiple endmembers and their abundance proportions vary
across the patch. As for FPKmeans, we collect the proportion4

ρ of tentative endmembers in the “best” patches—i.e., those
which provide the smallest approximation errors—and we
arrange them in a matrix denoted Y . As explained above, each
row vector of this matrix is either an estimate of an endmember
of F or a mixture of them. As we assumed a linear mixture
model (LMM), this matrix can be written as

Y = G · F. (12)

Then, as we did in VPWNMF in the fist part of this paper [20],
VCA is used to extract the final set of endmembers. Finally,
the abundance matrix G is estimated using the same approach
as in FPKmeans. The whole strategy is provided in Algorithm
Algorithm 3.

C. Algorithms

This section introduces the pseudo code for our pro-
posed methods. While these algorithms share several proce-
dural steps, they fundamentally differ in their methodologies
as previously discussed. Algorithm 1 introduces the shared
patch processing steps essential to both the Filter Patch-
based Kmeans (FPKmeans) and the Filter Patch-based Vertex
Component Analysis (FPVCA), focusing on the extraction of
tentative endmembers. Building upon this, Algorithm 2 and
Algorithm 3 diverge to apply specific endmember extraction
techniques, and the usage of Assumption 2 or Assumption 3.

V. EXPERIMENTS AND RESULTS

A. Experiment Setup

To evaluate the effectiveness of our proposed methods, we
conducted experiments on synthetic images and real snapshot
spectral imaging (SSI) images captured by SSI cameras. We
utilized the same set of images introduced in Part I of our
study for the synthetic images. Specifically, we considered
two scenarios: Assumptions one and two are satisfied Fig. 4,
and Assumptions one and three are satisfied Fig. 5. Each
synthetic image consisted of a 100 × 100 pixel grid with
three endmembers, namely water, metal, and concrete, whose
spectral signatures were obtained from [37]. Furthermore, we
consider the real spectral profiles derived from the calibration
files of the photonfocus Snapshot 5x5 spectral camera [28].
Spectral correction is applied after processing the images using
the correction matrix provided by the camera manufacturer, as
explained in Section II.

In our evaluation, we compared the performance of our
approaches against several baseline methods, including the

4As for KPWNMF, we only keep spectra estimated in patches where the
approximation error is below the median of all the patch norm errors, i.e.,
ρ = 0.5.

Algorithm 1 Rank-one patch detection and spectra estimation
method used in both proposed FPKmeans and FPVCA
Inputs:
The SSI matrix
p: the number of endmembers
H: the response matrix
α: the regularization parameter
nb patches: the number of patches to be processed

Output:
- Matrix M containing the “best” vectors for further process-
ing.
Processing:

1: for r = 1 to nb patches do
2: Let xr be the SSI vector linked to Patch r
3: Estimate ŷ using Eq (10)
4: end for
5: Keep the 50% best vectors ŷ—according to ‖xr−Hŷ‖2—

and organize them as a matrix M

6: return M

Algorithm 2 Filter Patch-based Kmeans (resp. K-medians),
(FPKmeans)
Inputs:
Matrix F from Algorithm 1
p: the number of endmembers

Outputs:
[G,F ] represents the final abundances and endmembers.

Processing:
1: Call Algorithm 1 to obtain F

2: F = K-means(F , p) (resp. K-medians(F , p))
3: Compute G using Eq. (11) and Naive WNMF

Algorithm 3 Filter Patch-based Vertex Component Analysis
(FPVCA)
Inputs:
Matrix Y from Algorithm 1
p: the number of endmembers

Outputs:
[G,F ] represents the final abundances and endmembers.

Processing:
1: Call Algorithm 1 to obtain Y

2: F = VCA(Y , p)
3: Compute G using equation (11) and Naive WNMF
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(a) SSI Image (b) Water (c) Metal (d) Concrete

Fig. 4. Image 1, SSI image where assumptions 1 and assumption 2 are
satisfied with abundance maps of the three endmembers.

(a) SSI Image (b) Water (c) Metal (d) Concrete

Fig. 5. Image 2, SSI image where assumptions 1 and assumption 3 are
satisfied with abundance maps of the three endmembers.

Naive method, KPWNMF, VPWNMF, and five two-step
demosaicing-then-unmixing methods. For the latter category,
we employed seven state-of-the-art demosaicing methods,
namely GRMR [8], BTES [7], WB [4], PPID [6], ItSD
[5], SAND [9], and PCWB [38]. In the second step, we
unmix the restored data cube Y using VCA for estimating
the endmembers and Fully Constrained Least Squares (FCLS)
for abundance estimation. It is important to note that in these
experiments, we consider a more complex scenario by simu-
lating realistic filter responses. As a result, unlike the first part
of this paper, an extra stage is introduced for all the state-of-
the-art (SotA) methods. This additional step involves applying
the correction matrix. We have two options for its placement:
either after the demosaicing step or equivalently after the
unmixing step. However, for consistency and to maximize
performance, we apply the correction matrix after demosaicing
for all methods because they perform better except PPID,
KPWNMF, and VPWNMF, which show similar performance
trends in both placements. We evaluated the tested methods
by assessing demosaicing and unmixing enhancements. For
demosaicing, we measured the performance using Peak Signal-
to-Noise Ratio (PSNR) by comparing estimated Y matrices
with ground truth. While for unmixing, we utilized Signal-to-
Interference Ratio (SIR) and Spectral Angle Mapper (SAM)
for endmember estimation, along with Mixing Error Ratio
(MER) for quantifying abundance map quality. We addition-
ally incorporated RMSE for abundance estimation accuracy
and running time in seconds to assess computational efficiency.

We also conducted experiments to study the impact of
regularization parameter in the deconvolution step on the
effectiveness of the proposed methods.

For our real data experiment, we use images from the Hyko
2 dataset [21]. This dataset consists of images captured by two
snapshot mosaic cameras and covers the spectral range from
400 to 1000 nm, encompassing the visible and near-infrared
regions.

B. The impact of Regularization Parameter α
In the first set of experiments we study the impact of the

regularization on the deconvolution performance. The regu-
larization parameter α controls the Tikhonov regularization
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Fig. 6. Influence of the regularization parameter α on the achieved Spectral
Angle Mapper (SAM) value for each noise level

in Eq. (9) , which helps balance the trade-off between data
fidelity and regularization in the deconvolution process. Fig.6
shows the influence of the regularization parameter α on the
achieved Spectral Angle Mapper (SAM) value for each noise
level in the context of the inverse problem when applied to
noiseless and noisy scenarios. We can see from the figure
that a small value of α = 0.0005 results in the best SAM
value. However, as noise is introduced, the regularization
parameter needs to be increased to improve the robustness of
the deconvolution process. This trend can be followed in the
plot, where higher noise levels correspond to larger values of
α for achieving better SAM. It is important to note that in all
the following experiments in the article, 0.0005 was chosen as
the value for α for the noiseless case. For the noisy case, we
selected the value from the figure where SAM was the lowest,
ensuring optimal performance at each noise level.

C. Performance evaluation on synthetic images for the real
case

In the second set of experiments, we utilize images intro-
duced in Part I of our study. We consider a real filter with a
5×5 filter pattern and investigate the performance of the tested
methods under different noise levels. The PSNR, SAM, SIR,
and SAM achieved by all the methods are reported in Table II.
While the average performance with different noise levels for
both images with is presented in Fig. 7 and Fig. 8 respectively.
The results presented in the table and figures reveal several
significant observations:

• The performance of both KPWNMF and VPWNMF
methods drops when compared to the ideal situation. This
decline is mainly due to two reasons: first, the spectral
correction step, which causes estimation mistakes, espe-
cially when there is a lot of background noise. Second,
the weight matrix uses its values from the response matrix
during the factorization step for each rank-1 patch.

• The proposed FPKmeans and FPVCA methods exhibit
superior performance in PSNR compared to our previous
methods and the two-step approaches. The performance
of these methods may vary under different noise lev-
els. FPKmeans and FPVCA consistently outperform the
other methods. However, their performance declines at
lower input SNRs, and they exhibit similar demosaicing
performance to the state-of-the-art methods. It is worth
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TABLE II
PSNR, SAM, SIR, MER,RMSE, AND TIME IN SECONDS OBTAINED FOR THE SYNTHETIC IMAGES WITH 5X5 REAL FILTERS. IN BOLD, THE HIGHEST

PERFORMANCE VALUE.

Method Image 1 (Assumptions 1 & 2) Image 2 (Assumptions 1 & 3)
PSNR SAM SIR MER RMSE Time PSNR SAM SIR MER RMSE Time

GMRM 23.0 0.52 8.3 0.7 0.4 1.7 24.3 0.36 10.8 0.2 0.4 1.6
BTES 18.6 0.52 9.4 -6.1 0.5 0.3 18.3 0.3 8.4 -3.3 0.5 0.5
WB 23.8 0.38 13.5 -4.2 0.4 0.3 26.4 0.3 16.4 -0.3 0.3 0.4
PPID 28.6 0.12 23.2 7.1 0.3 0.4 33.9 0.1 30.2 13.0 0.2 0.4
ItSD 24.4 0.32 11.8 0.2 0.5 0.3 26.3 0.32 14.3 0.6 0.4 0.4
SAND 28.9 0.13 24.3 7.9 0.3 3728 33.9 0.1 17.3 9.1 0.2 3700
PCWB 27.3 0.15 19 5.3 0.3 0.3 29.3 0.4 15 2.3 0.2 0.3
Naive 23.9 0.4 11.2 2.5 0.3 10 25.6 0.4 12.0 3.0 0.3 10
KPWNMF 30.1 0.06 32.7 12.5 0.2 6.1 34.9 0.08 32.2 16.4 0.2 6.1
VPWNMF 30.0 0.06 33.6 12.4 0.2 5.1 35.6 0.06 33.1 16.9 0.2 5.1
FPVCA 30.1 9 · 10−8 149.0 12.2 0.1 4 36.5 8 · 10−8 149.0 17.6 0.07 4
FPKmeans 30.1 9 · 10−8 149.0 12.2 0.1 4.5 35.8 0.05 104.5 17.1 0.07 4.5
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Fig. 7. From left to right: mean PSNR, SAM, SIR, MER and RMSE—obtained for Image 1 (Assumption 1&2) with 5× 5 real filter—relative to input SNR.
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Fig. 8. From left to right: mean PSNR, SAM, SIR, MER and RMSE—obtained for Image 2 (Assumption 1&3) with 5×5 Real filter—relative to input SNR.

mentioning that the advantage of FPKmeans and FPVCA
is that they eliminate the need for spectral correction steps
required in the other methods.

• In addition to their superior reconstruction quality, the
proposed FPKmeans and FPVCA methods outperform all
other methods regarding endmember identification. They
achieve the lowest spectral angle mapper (SAM) values
and the highest signal interference ratio (SIR) values,
indicating their accurate identification of endmembers
even in the presence of noise. Figures 9 and 10 illustrate
the comparison of true and estimated endmembers using a
5×5 filter in the noiseless case. These methods exhibit ro-
bustness to noise, maintaining their superior performance
even at higher noise levels. However, it is worth noting
an exception observed in Image 2 with SNRs below 25
dB, where even PPID outperforms FPKmeans in terms
of SIR. In the case of Image 1, where the assumptions of
FPKmeans are satisfied, the latter exhibits slightly better
performance than FPVCA.

• The proposed methods FPKmeans and FPVCA demon-

strate comparable performance in terms of the Mixing
Error Ratio (MER), to the joint unmixing and demosaic-
ing approaches KPWNMF and VPWNMF. These meth-
ods consistently achieve the highest MER values among
all other methods, indicating their superior accuracy in
estimating the abundance maps. Furthermore, the exper-
iments reveal the robustness of FPKmeans and FPVCA
to noise, as they maintain their exceptional performance
even at higher noise levels. Fig. 11 and Fig. 12 illustrate
the comparison between the restored abundance maps and
the true abundance maps for both images, using the 5×5
filter in the noiseless case.

• The RMSE results, implying precision in abundance
estimation, show FPKmeans and FPVCA as superior,
even under various noise levels. Their lowest RMSE
values, complemented by the visual quality of abundance
maps in figures Fig. 11 and Fig. 12 , demonstrate their
robustness and accuracy.

• In assessing the new methods FPKmeans and FPVCA, we
note their computational time is improved compared to
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(a) FPKmeans
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(b) FPVCA
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(c) PPID
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(d) SAND
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(e) PCWB
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(f) Naive
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(g) KPWNMF
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Fig. 9. Estimated spectra for the Image 1 with Real filter of size 5× 5.

KPWNMF and VPWNMF. However, it remains higher
than some SotA methods. Despite this, our study fo-
cuses on demonstrating the accuracy and effectiveness of
these methods in snapshot spectral imaging rather than
on computational efficiency. Optimizing running time is
considered future work to enhance these methods for
more time-sensitive applications

D. Performance evaluation on Hyko 2 dataset

In the first part of the journal, the Hyko dataset was
utilized to evaluate various methods for image segmentation,
including VPWNMF and KPWNMF. The results demonstrated
that VPWNMF achieved the best segmentation performance,
followed by KPWNMF. Spectral correction was applied to
the output of these methods after the demosaicing step to
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(a) FPKmeans
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(b) FPVCA
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(c) PPID
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(d) SAND
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(e) PCWB
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(f) Naive
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(g) KPWNMF
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Fig. 10. Estimated spectra for the Image 2 with Real filter of size 5× 5.

improve the accuracy5. In the second part of the journal, a
similar experiment was conducted using the same dataset.
However, in this case, the proposed methods, FPVCA, and
FPKmeans, exhibited comparable performance to VPWNMF
and KPWNMF, respectively, without spectral correction. The
results in Fig. 13 showed that FPVCA exhibited comparable
performance to VPWNMF, while FPKmeans outperformed all
other methods, including VPWNMF. It is worth noting that the
spectral correction step did not affect the abundance estimation
for VPWNMF, and KPWNMF as their abudndances remained
consistent even without correction.

5The correction matrix was kindly provided to us by the Hyko 2 dataset
authors.
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(a) Ground truth

(b) PPID

(c) SAND

(d) PCWB

(e) Naive

(f) KPWNMF

(g) VPWNMF

(h) FPVCA

(i) FPKmeans

Fig. 11. Estimated abundance maps for the Image 1 with real filter of size
5× 5

(a) Ground truth

(b) PPID

(c) SAND

(d) PCWB

(e) Naive

(f) KPWNMF

(g) VPWNMF

(h) FPVCA

(i) FPKmeans

Fig. 12. Estimated abundance maps for the Image 2 with real filter of size
5× 5
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(a) SSI Image (b) KPWNMF (c) VPWNMF

(d) FPKmeans (e) FPVCA (f) Naive

Fig. 13. Comparison of the segmentation performance of all the methods on the Hyko 2 Dataset Image

VI. CONCLUSION AND DISCUSSION

In the second part of this work, we study the significance
of joint deconvolution and unmixing for snapshot spectral
imaging (SSI). The experimental results on synthetic and real
data demonstrated that the proposed methods, FPVCA, and
FPKmeans, outperformed the joint demosaicing and unmixing
approaches and the traditional 2-stage methods involving sep-
arate demosaicing and unmixing steps. Moreover, integrating
deconvolution into the processing pipeline yielded superior
results, enhancing the accuracy of image segmentation, demo-
saicing, and unmixing accuracy. The improved performance is
attributed to the proposed sparsity assumptions and utilizing
the harmonics of the Fabry-Perot filters (FPf) provided in the
response matrix. This approach eliminated the need for spec-
tral correction steps after the demosaicing process, simplifying
the workflow and improving efficiency. However, it is essential
to acknowledge the existing challenges, such as spectral vari-
ability, which can still introduce estimation errors. Future work
will address these challenges and further refine the methods
to tackle spectral variability and enhance the overall perfor-
mance of snapshot spectral imaging systems. Additionally,
incorporating models for spectral correction based on varying
optical setups and light sources will be explored to extend the
generalizability of our methods in diverse practical scenarios.
Finally, we will optimize the running time of our methods to
ensure their applicability in time-sensitive scenarios.
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