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Explore Exciting Imaging Topics!

Presentation Overview

Even if the title sounds technical, this presentation covers a range of interesting topics with
something for everyone.

Key Topics

Hyperspectral imaging
Demosaicing (Super-resolution)
Unmixing (Non-supervised classification)
NMF (Non-negative matrix factorization)
Image inverse problems
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Evolution of Machine Vision

Monochromatic Image Color Image Hyperspectral Image

Monochromatic Camera RGB Camera Hyperspectral Camera
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Hyperspectral Cameras

Hyperspectral Cameras Cons

Current spectral camera systems are slow, usually taking seconds to minutes to scan an object.

Not portable to be placed on drones or unmanned aerial vehicles (UAVs).

Expensive!

Low cost, Portable and Fast cameras are required!
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Compact Hyperspectral Cameras

Figure: Wafer including CMOS image sensors with integrated filter mosaics (left) and a packaged sensor (right).
(Source Geelen et al.)

.

Compact Hyperspectral Camera Fabry Perot Interferometer
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Snapshot Spectral Cameras

No scan= real-time HSI data acquisition

Spatial vs. spectral resolution trade-off (e.g. 16 band images of 512x272 resolution today)

Potential resolution reconstruction increase by demosaicing algorithms

Figure: The SnapShot SWIR camera from IMEC using a
mosaic pattern of 16 SWIR filters. Figure: SSI cameras associate each spatial pixel with a

specific spectral band.
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Snapshot Spectral Cameras
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Demosaicing
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Unmixing
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Unmixing
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Nonnegative Matrix Factorization

Factorize a non-negative matrix Y ∈ R
(m·n)×k
≥0 into G ∈ R

(m·n)×p
≥0 and F ∈ R

p×k
≥0 :

Y ≈ G · F

Constraints: G,F ≥ 0, p < min(m · n, k).

In Hyperspectral Unmixing, Y represents the unfolded datacube, F contains pure material
spectra (endmembers), and G gives their spatial proportions (abundances), mirroring NMF’s
structure.

Solving NMF: Multiplicative updates minimize ‖Y −G · F‖2
F :

G← G ◦ YF T

GFF T , F ← F ◦ GT Y
GT GF

Stop when error < 10−5 or max iterations (e.g., 1000).
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Weighted Nonnegative Matrix Factorization (WNMF)

Definition: Factorize a non-negative matrix Y ∈ R
(m·n)×k
≥0 into G ∈ R

(m·n)×p
≥0 and F ∈ R

p×k
≥0 , with

a weight matrix W ∈ R
(m·n)×k
≥0 :

W ◦ Y ≈ W ◦ (G · F )

Solving WNMF: Minimize the weighted Frobenius norm ‖W ◦ (Y −G · F )‖2
F , where ◦ denotes

element-wise multiplication. Two approaches:
Direct Method: Multiplicative updates:

G← G ◦
(W ◦ Y )F T

(W ◦ (GF ))F T
, F ← F ◦

GT (W ◦ Y )

GT (W ◦ (GF ))

Stop when weighted error < 10−5 or max iterations (e.g., 1000).
EM Strategy:

E-step: Estimate missing or uncertain entries in Y to form Ŷ , using current G and F , with weights in W
reflecting confidence:

Ŷ = W ◦ Y + (1m·n×k − W ) ◦ (G · F )

Adjust W to reflect confidence in estimates (e.g., lower weights for imputed values).
M-step: Apply WNMF update rules (above) to updated Ŷ and W to refine G and F .
Iterate: After convergence or fixed iterations, update Ŷ and W in a new E-step using latest G and F .
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What are we trying to solve?

K. Abbas et al. Joint Unmixing and Demosaicing Methods for Snapshot Spectral Images 23/05/2025 12



What are we trying to solve?

K. Abbas et al. Joint Unmixing and Demosaicing Methods for Snapshot Spectral Images 23/05/2025 12



What are we trying to solve?

K. Abbas et al. Joint Unmixing and Demosaicing Methods for Snapshot Spectral Images 23/05/2025 12



What are we trying to solve?

K. Abbas et al. Joint Unmixing and Demosaicing Methods for Snapshot Spectral Images 23/05/2025 12



Problem Statement: Joint Demosaicing and Unmixing for SSI

Goal: Reconstruct 3D data cube (m × n × k ) from
2D projection.

Demosaicing: Recover Y from partial matrix X :

W ◦ X = W ◦ Y

where W is a binary weight matrix, ◦ denotes the
Hadamard product.

Unmixing: Decompose Y as:

Y ≈ G · F

where G (m · n × p) is abundances, F (p × k ) is
endmembers.

Joint Model: Combine processes:

W ◦ X ≈ W ◦ (G · F )

Recover Ŷ :

Ŷ = W ◦ X + (1m·n×k −W ) ◦ (G · F )

Similar to the Weighted Non-negative Matrix
Factorization (WNMF) problem.
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Weighted Nonnegative Matrix Factorization
Solving WNMF: EM framework with NeNMF:

E-step: Estimate Ŷ using prior G(t−1),F (t−1):

Ŷ = W ◦ X + (1(m·n)×k −W ) ◦ (Ĝ(t−1) · F̂ (t−1))

M-step: Apply NeNMF updates to Ŷ for Ĝ(t), F̂ (t).

Constraints: Non-negativity (G,F ≥ 0); Abundance Sum-to-One (ASC) via augmented
matrices:

Ȳ = [Ŷ , δ1(m·n)×1], F̄ = [F̂ , δ1p×1]

Ground truth Naive WNMF (PSNR=35.1dB)

Figure: Demosaiced image obtained with Naive method
a for the 4× 4 patch.

Naive method’s performance is lower than
expected.

Highly sensitive to initial matrices F and G.

Can pre-estimating F improve results?
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Matrix-Completion Framework
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K-means Patch-based Weighted Nonnegative Matrix Factorization (KPWNMF)

Steps of the proposed method
1 Consider the sensor “patches” as the zones to analyze .
2 Sparse Component Analysis - Sources are accessible: for

each source, there exist some small areas to find where
only one source is active, e.g., [Deville, 2014]

3 Find “zones” where only one endmember is active
4 Estimate tentative endmembers in all these zones using

Rank-1 WNMF

Wi ◦ Xi ≈ Wi ◦ (g
i
· fi ), (1)

where g
i
represents a k × 1 column vector and fi

represents a 1× k row vector.
5 Derive actual endmembers from the above estimates

(clustering stage)
6 Estimate the abundances from the observed data and the

endmembers using WNMF
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Assumptions Required for the Proposed Method

Assumption 1 (Pure Patch Assumption)
For each endmember, there exists at least one sensor “patch” where only this endmember is
present.
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Assumptions Required for the Proposed Method

Assumption 2
In the patches where several endmembers are present, their abundances should significantly vary
over each patch.
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K-means Patch-based Weighted Nonnegative Matrix Factorization (KPWNMF)
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VCA Patch-based Weighted Nonnegative Matrix Factorization (VPWNMF)

This method follows the same processing steps. However, it relaxes the Assumption 2.

Assumption 3
In the patches where several endmembers are present, their abundances may or may not vary over
each patch.
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VCA Patch-based Weighted Nonnegative Matrix Factorization (VPWNMF)

In practice, a rank-1 patch is not necessarily a pure patch
î Several scenarios:

When one unique endmember is present in the patch, the rank-1 approximation error is low
‖Wi ◦ Xi −Wi ◦ (g

i
· fi )‖2

F � 0

When several endmembers are present in the patch,
the rank-1 approximation error is high is the abundances vary over the patch (We ignore it!)
the rank-1 approximation error is low if the abundances are constant over the patch (We collect it!)

î The value of the loss allows to detect rank-1 patches

We collect all the vectors fi with sufficiently low errors in a matrix X.

The recovered spectra in low-error rank-1 patches may be seen as linear mixtures of the
endmembers
X ≈ G︸︷︷︸

Abundances

· F︸︷︷︸
Endmembers

.

The pure-patch assumption means that each row of F can be found in X.

The VCA algorithm is then used to derive the final endmembers.
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VCA Patch-based Weighted Nonnegative Matrix Factorization (VPWNMF)
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VCA Patch-based Weighted Nonnegative Matrix Factorization (VPWNMF)
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Filtering-Based Approaches
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K-means Patch-based Weighted Nonnegative Matrix Factorization (KPWNMF)

Steps of the proposed method
1 Consider the sensor “patches” as the zones to analyze .
2 Sparse Component Analysis - Sources are accessible: for

each source, there exist some small areas to find where
only one source is active, e.g., [Deville, 2014]

3 Find “zones” where only one endmember is active
4 Estimate tentative endmembers in all these zones by

Inverting the filter response.
5 Derive actual endmembers from the above estimates

(clustering stage)
6 Estimate the abundances from the observed data and the

endmembers using WNMF
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Snapshot Spectral Camera

Theoretically, the SSI cameras associate each spatial pixel with a specific spectral band.

In reality, the value at each pixel is a filtered version of the materials that exist in the pixel.

yi (λi ) =
k∑

j=1

hi (λj ) · xi (λj ) + ωi , (2)

Snapshot mosaic filter (Source Geelen et al.)
Ideal (in red) and real (in blue and green) spectral

response of two Fabry-Perot filters of the 4× 4
IMEC SSI camera.
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Filtering Based Approach - Problem Statement
Fabry-Perot filters introduce additional harmonics around each wavelength of interest in real
implementation

yi (λi ) =
k∑

j=1

hi (λj ) · xi (λj ) + ωi , (3)

These filters hi (λ) are known and are provided by the camera manufacturer
Over the whole patch, we get k observed values y , [y1(λ1), . . . , yk (λk )]T , which depend on a
k × k data matrix

X ,

 x1(λ1) . . . x1(λk )
...

...
xk (λ1) . . . xk (λk )

 (4)

Supposing the patch is pure (aka rank-1 patch), X reduces to a single vector xT

The filters can be collected as a matrix H s.t.

y ≈ H · xT . (5)

And x can be estimated in such a patch solving

min
y≥0

1
2
‖x − H · yT‖2

2 +
α

2
‖D · yT‖2

2, (6)

K. Abbas et al. Joint Unmixing and Demosaicing Methods for Snapshot Spectral Images 23/05/2025 25



Filtering-based Framework
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A review of the proposed methods
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Experiments on Synthetic Data
To assess the performance of the proposed method, we conduct experiments on SSI
simulations derived from synthetic images.
We assume that the hyperspectral imagery is acquired using a SSI camera system, equipped
with 5× 5 spectral filter patterns.
Reconstruction quality is measured in terms of Peak Signal-to-Noise Ratio (PSNR, in dB) while
the unmixing enhancement is measured using Signal-to-Interference Ratio (SIR, in dB), Mixing
Error Ration (MER, in dB), Spectral Angel Mapper (SAM) and Root Mean Square Error(RMSE).

Figure: Image 1, assumption 1 & 2 Figure: Image 2 , assumption 1 &3
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Restored Spectra for Image 2

1 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

Wavelength Index

E
nd

m
em

be
ra

m
pl

itu
de

Theo. Endmember 1 Est. Endmember 1
Theo. Endmember 2 Est. Endmember 2
Theo. Endmember 3 Est. Endmember 3

PPID

1 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

Wavelength Index

E
nd

m
em

be
ra

m
pl

itu
de

Theo. Endmember 1 Est. Endmember 1
Theo. Endmember 2 Est. Endmember 2
Theo. Endmember 3 Est. Endmember 3

SAND

1 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

Wavelength Index

E
nd

m
em

be
ra

m
pl

itu
de

Theo. Endmember 1 Est. Endmember 1
Theo. Endmember 2 Est. Endmember 2
Theo. Endmember 3 Est. Endmember 3

KPWNMF

1 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

Wavelength Index

E
nd

m
em

be
ra

m
pl

itu
de

Theo. Endmember 1 Est. Endmember 1
Theo. Endmember 2 Est. Endmember 2
Theo. Endmember 3 Est. Endmember 3

VPWNMF

1 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

Wavelength Index

E
nd

m
em

be
ra

m
pl

itu
de

Theo. Endmember 1 Est. Endmember 1
Theo. Endmember 2 Est. Endmember 2
Theo. Endmember 3 Est. Endmember 3

FPKmeans

1 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

Wavelength Index

E
nd

m
em

be
ra

m
pl

itu
de

Theo. Endmember 1 Est. Endmember 1
Theo. Endmember 2 Est. Endmember 2
Theo. Endmember 3 Est. Endmember 3

FPVCA

K. Abbas et al. Joint Unmixing and Demosaicing Methods for Snapshot Spectral Images 23/05/2025 29



Performance evaluation on real SSI images

SSI Image PPID GRMR KPWNMF

VPWNMF FPKmeans FPVCA Naive

Figure: Segmentation of a Hyko 2 database image for different demixing methods
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Conclusion

Main Findings
In ideal scenarios with varying noise levels, KPWNMF and VPWNMF, which belong to the
Low-rank framework, exhibited the highest performance.

When real filters were introduced, FPKmeans and FPVCA (Filtering based framwork)
demonstrated superior performance.

Although the performance of both KPWNMF and VPWNMF methods declined compared to
ideal situations, they still outperfmed 3-stage approaches.

Take-home Messages
Employing a joint unmixing and demosaicing approach within the low-rank completion
framework proves superior to 3-stage approaches in both ideal and real-world scenarios.

Obviating the spectral correction step and starting the deconvolution process directly from the
raw SSI images improved unmixing and demosaicing results while simplifying the overall
processing pipeline.
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Future Work
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Take into account endmember spectral variability.

Take into account Fabry-Perot filter variability.

Improving the computational efficiency of the frameworks e.g., compressed learning techniques.
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Thank You!
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Performance Evaluation on Image 2 — SotA Methods

GRMR BTES WB PPID ItSD SAND PCWB
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Performance Evaluation on Image 2

SoTA Methods Range (Max-Min) Naive WNMF KPWNMF VPWNMF FPKmeans FPVCA
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Abundance Maps for Image 2

Ground truth PPID

KPWNMF VPWNMF

FPVCA FPKmeans
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Processing the SSI Image
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Results on CAVE dataset

Ground truth PPID (PSNR=37.1dB) SAND (PSNR=37.1dB) KPWNMF(PSNR=37.7dB)

VPWNMF(PSNR=37.7dB) Naive WNMF (PSNR=35.1dB)
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