
Modèles de diffusion pour la synthèse de textures anisotropes
Kinan Abbas1,2, Patrice Abry1 and Stephane Roux1

1CNRS, ENS de Lyon, LPENSL, UMR5672, 69342, Lyon cedex 07, France
2XMBAUBLE, Lyon, France

{firstname.lastname}@ens-lyon.fr

Diffusion Models

▶ Diffusion models, inspired by thermodynamics [1], generate data by reversing a
noise-adding process.

▶ DDPM [2] uses a Markov chain to add Gaussian noise over T steps, transforming
data into noise, then trains a U-Net to denoise it back.

Forward Process: Adds noise iteratively:

q(xt|xt−1) = N (xt ;
√

1 − βtxt−1, βtI) (1)

Reverse Process: Learns to denoise:

pθ(xt−1|xt) = N (xt−1;µθ(xt , t),Σθ(xt , t)) (2)

Training Loss: Minimizes noise prediction error:

L = Et ,x0,ϵ

[
∥ϵ− ϵθ(xt, t)∥2] (3)

Figure: Forward and reverse diffusion process in DDPM (Source: Ho et al., 2020).
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Figure: Block diagram of a diffusion model, showing the training phase (left) where noise is added to input images and the
model learns to denoise, and the sampling phase (right) where images are generated from pure noise using the trained model.
Equations describe key steps, including the forward process, loss, and reverse process (DDPM).

▶ The linear noise scheduler progressively increases βt from a small value (e.g.,
0.0001) to a larger value (e.g., 0.02) over T steps [3].
βt = βstart +

t−1
T−1(βend − βstart), where βstart = 0.0001 and βend = 0.02.

Training Configuration

▶ Based on DDPM [2] with 1000 timesteps, the model trains a U-Net to minimize MSE
loss between predicted noise ϵθ(xt, t) and actual noise ϵ, reconstructing 128 × 128
textures.

▶ Training: 2000 epochs, Adam (lr=0.0002, batch=32) on AD102GL [RTX 6000 Ada]
GPU. Tested linear, cosine, quadratic, and sigmoid noise schedulers, trained
independently per scheduler.

Architecture:

Figure: U-NET with ResNet Blocks

Dataset
▶ Two datasets, each with 3000 AFBF images generated for different spectral density

parametrizations.
▶ Scenario 1: Anisotropy induced solely by Hurst function h while topothesy uniform.
▶ Scenario 2: More complex anisotropy induced by directionalities of both h and τ .

Conclusion and Future Work

▶ This study demonstrates that diffusion models with a linear scheduler effectively
synthesize anisotropic textures, as evidenced by the close alignment of generated
textures with the training data across all scales and bands.

▶ The histograms also confirm the model’s ability to reproduce not only the ensemble
averages but also the variability between realizations of the same ensemble.

Future Work: explore the synthesis of textures with more complex dynamics, for
example non-Gaussian, multifractal, multivariate, or heterogeneous.

Anisotropic Self-Similar Textures

▶ Anisotropic Self-Similar Textures are patterns that look similar at different scales
(self-similar ) and they gave properties that vary with direction (anisotropic). They can
be modeled by Anisotropic Fractional Brownian Fields (AFBF)

▶ AFBF are Gaussian processes that model textures with Self-similarity and Anisotropy:

X f (t) =
∫

R2

(
ei⟨t ,ξ⟩ − 1

)√
f (ξ) Ŵ (ξ)dξ (4)

where Ŵ (ξ) is Gaussian white noise in frequency domain.
▶ The spectral density f (ξ) controls texture properties:

f (ξ) = τ

(
ξ

|ξ|

)
∥ξ∥−(2h( ξ|ξ|)+2) (5)

Where ξ
|ξ|is the Direction of frequency, ∥ξ∥ is the Magnitude of frequency, h

(
ξ
|ξ|

)
is the

Hurst function (roughness) and τ
(
ξ
|ξ|

)
is the Topothesy (intensity).

▶ Hurst Function h: Controls roughness in each direction and it ranges: 0 < h < 1
▶ Topothesy τ : Adjusts intensity in each direction. Higher τ : Stronger features

Dual-Tree Complex Wavelet Transform (DTCWT)

▶ Analyze textures by decomposing them into different scales and directions. It is ideal
for self-similar and anisotropic textures. It decomposes texture X using mother
wavelets ψ(b) for 6 directions (b = 1, . . . ,6)

c(b)
j ,k = ⟨X ,2−jψ(b)(2−j(· − k))⟩ (6)

▶ Energy of coefficients [4, 5]:

S(j ,b) =
∑

k

|c(b)
j ,k |2 ∼ V(τ, h, ψ(b))2j(2H(h,ψ(b))+1) (7)

▶ Self-Similarity: Power law indicates consistent scaling. Anisotropy: Variations in
H(h, ψ(b)) show directional roughness. Variations in V(τ, h, ψ(b)) show directional
intensity.

Results
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Figure: Texture Synthesis Performance. From left to right: (a) Training sample. (b) Hurst function H. (c) Topothesy function τ .
(d) Sample generated by the diffusion model. (e) Spatial averages of the base-2 logarithm of the variance of the modulus of the
multiband complex wavelet coefficients, for each of the six bands independently, as a function of octaves. The two rows
correspond to the scenarios, characterized by different anisotropies.

Table: Statistics of training and generated textures

Scénario 1 Scénario 2
Moment Entraı̂nement Diffusion Entraı̂nement Diffusion
Moyenne 0.00 0.00 0.00 0.00
Variance 0.23 0.20 0.23 0.22
Asymétrie -0.01 0.00 -0.01 -0.03
Kurtosis 2.38 2.8 2.39 2.70
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