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Abstract—Multifractal textures provide a robust framework
for modeling real-world textures characterized by complex,
transient, and statistically rich patterns, with applications span-
ning biomedical imaging to material science. While diffusion
models have proven effective in generative tasks, their ability to
synthesize textures, i.e., images with no geometry but instead with
rich and complex spatial dynamics, remains underexplored. This
study investigates the performance of diffusion neural networks
in generating multifractal textures, which are used as repre-
sentatives of such complex textures with prescribed statistical
properties, yet without embedding multifractal information in
the training loss. From a dataset of 1000 multifractal textures,
a U-Net-based diffusion model is trained, under four different
noise schedulers to explore their influence on synthesis quality.
Performance is evaluated by comparing the multifractal statis-
tics, assessed by wavelet-leader analysis, of generated textures
against those of the training set. Results suggest that overall the
linear noise scheduler performs best in reproducing multifractal
properties in textures.

Index Terms—Diffusion Models, Multifractal Textures, Texture
Synthesis, Wavelet-Leader Analysis, Noise Schedulers

I. INTRODUCTION

Context. Neural network (NN)-based image generative models
have become critical in a wide variety of applications [1].
However, most images generated by NNs contain high geo-
metric content (e.g., faces, buildings, streets) [2], rather than
pure texture images with little or no geometry, characterized
instead by rich and complex spatial dynamics and intricate
statistical properties. The major goal of this work is to inves-
tigate whether Diffusion Networks (DN), the most recent and
promising paradigm in generative Artificial Intelligence (AI)
[3], can efficiently synthesize multifractal textures, used here
as representatives of textures with rich multiscale properties.
Related work. Generative Adversarial Networks (GANs), first
proposed by Goodfellow et al. [1], marked a major advance-
ment in image generation. They are capable of capturing
geometric structures but often fail to preserve fine statistical
details [4]. Diffusion models, pioneered by Sohl-Dickstein et
al. [5] and further developed in [3], have since emerged as
a superior alternative offering improved control over statisti-
cal properties. These models iteratively transform noise into
structured outputs by reversing a stochastic diffusion process.
Subsequent advancements, such as denoising diffusion proba-
bilistic models [3] and score-based generative methods [6],
have refined their efficiency and applicability, particularly
in image generation. Unlike GANs, diffusion models better
capture fine-grained statistical properties, making them well-
suited for various applications [7].

Diffusion models have recently been adapted for texture
synthesis. Chen et al. [8] utilized diffusion models for text-
driven 2D texture synthesis, generating visually rich patterns
from textual descriptions. Similarly, Cao et al. [9] introduced
a method for 3D textures, synthesizing surface details for
geometric models using image diffusion techniques. Yu et
al. [10] further showcased their potential in generating mesh
textures, providing a generative solution for 3D graphics
applications. Despite these advances, the potential of diffusion
models for synthesizing statistically complex textures, such as
those with multifractal properties, remains largely unexplored.

In terms of texture models, Gaussian random fields have
been widely used in a variety of applications [11]. While they
effectively describe the global spatial dynamics of textures by
accurately modeling the power spectral density, they are not
well suited to capture transient patterns or local structures
in textures. Multifractal processes enrich Gaussian random
fields as texture models by incorporating rich local or transient
patterns, with tight spatial organization, which are not already
accounted for in the power spectral density (cf. e.g., [12]).
Goals, Contributions, and Outline. The overarching goal of
this work is to quantify the ability of Diffusion Networks
to generate multifractal textures, used as representatives of
textures with rich and complex spatial dynamics and intricate
statistical properties beyond those of Gaussian processes. This
evaluation is conducted using a dataset of 1,000 univariate
multifractal random walk (MRW) images (256×256 pixels)
to assess the effect of four noise schedulers—cosine, linear,
quadratic, and sigmoid—on synthesis quality1. Results demon-
strate that the linear scheduler outperformed the other noise
scheduling strategies in consistently preserving the global
scaling correlations inherent in the training data while also
effectively reproducing the multifractal properties

The paper is organized as follows: Section II introduces the-
oretical background related to diffusion networks. Section III
defines multifractal processes and recalls the key steps of
the wavelet-leader-based analysis multifractal texture analysis.
Section IV describes the methodology used to assess the
ability of Diffusion Networks to generate univariate multi-
fractal textures. Section V details the results and discussion
of the synthesis quality and challenges encountered. Finally,
Section VI concludes the paper with a summary of the findings
and directions for future work.

1Source codes will be made available at the time of publication via an open
repository.



II. DIFFUSION MODELS

Diffusion models represent a class of generative models
that synthesize data by iteratively reversing a stochastic noise-
adding process, transforming pure noise into structured out-
puts [5]. The process begins with a forward diffusion stage,
defined as a Markov chain over T discrete timesteps. Here,
an initial sample x0 ∼ q(x0)—e.g., a texture image—is
progressively perturbed by Gaussian noise according to

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI), (1)

where βt ∈ (0, 1) is the time-dependent noise variance
controlling the noise intensity at each step t. This forward
process admits a convenient closed-form expression:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I), (2)

with αt = 1 − βt and ᾱt =
∏t

s=1 αs, enabling efficient
sampling of noisy states directly from the original data.

Diffusion models generate images by reversing the noise
corruption process. This reverse step is learned using a neural
network, usually a U-Net [3], and is modeled as:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σ
2
t I), (3)

where µθ(xt, t) predicts the mean of the denoising step, and
σ2
t is a predefined variance. Training optimizes a simplified

variational bound, reducing the mean-squared error loss:

Ex0,ϵ[∥ϵ− ϵθ(xt, t)∥2], (4)

where ϵ ∼ N (0, I) is the added noise, and ϵθ(xt, t) is
the U-Net’s noise prediction at timestep t. The choice of
noise schedule {βt}Tt=1—whether linear, cosine, quadratic, or
sigmoid—further shapes the model’s ability to balance detail
preservation and statistical accuracy.

The noise schedule controls the rate of noise injection in the
forward process and significantly influences the quality and
statistical fidelity of the generated output in diffusion models.
A linear schedule gradually increases βt from a small value
(e.g., 0.0001) to a larger one (e.g., 0.02) over T steps [3]. This
simple and consistent noise increase helps maintain a balance
between training efficiency and sample diversity:

βt = βstart +
t− 1

T − 1
(βend − βstart), (5)

where βstart = 0.0001 and βend = 0.02.
In contrast, the cosine schedule, proposed by Nichol et

al. [13], follows a cosine decay pattern, slowing noise addition
near the start and end of the process:

ᾱt =
cos2

(
π
2 · t/T+s

1+s

)
cos2

(
π
2 · s

1+s

) , βt = 1− ᾱt

ᾱt−1
, (6)

where s = 0.008. Quadratic schedules accelerate noise either
early or late in the timeline and can be expressed as follows:

βt =

(
β
1/2
start +

t− 1

T − 1
(β

1/2
end − β

1/2
start)

)2

, (7)

Sigmoid schedules, characterized by an S-shaped curve (e.g.,
derived from a logistic function), provide a smooth transition
with slow noise growth at the extremes and a rapid increase
in the middle:

βt = βstart + (βend − βstart) ·
1

1 + e−(−6+
12(t−1)

T−1 )
, (8)

III. MULTIFRACTAL TEXTURES

Modeling. Following Mandelbrot’s seminal work [14], Multi-
fractal random walks (MRW) [15] have become widely used as
versatile models for real-world textures characterized by scale-
free statistics [12], [16]. MRW, X(r), are classically defined
by means of two independent zero-mean Gaussian processes,
GH(r) and ωλ(r), as:

X(r) = GH(r)eωλ(r). (9)

The process GH(r) consists of the well-known 2D fractional
Gaussian noise (2D-fGn), a reference Gaussian model for
scale-free textures, fully defined by its covariance function,
controlled by the Hurst exponent H [17], [18]. The process
ωλ(r) is defined via its covariance function, designed to induce
multifractality in spatial statistics:

CMF r = λ2 log

(
L

∥r∥+ 1

)
, (10)

(for ∥r∥ ≤ L and 0 otherwise, with L as an arbitrary
integral scale). It is thus fully controlled by the multifractality
parameter λ [15].

Analysis. Let {dX(j, k)}, denote the discrete wavelet trans-
form coefficients of texture X , defined as inner products
between X and dilated (at scale 2j) and translated (at location
2jk) templates based on a tensor-product 2D wavelet [19]. Let
us further define wavelet leaders L(j, k) as local suprema of
wavelet coefficients, taken over finer scales and within a short
spatial neighborhood [20], [21].

It has been well-documented (cf. e.g., [20]) that, for MRW,
the first-order cumulant C1(2

j) and second-order cumulant
C2(2

j) of lnLX behave linearly in ln 2j :

C1(2
j) = c

(0)
1 + c1 ln 2

j , C2(2
j) = c

(0)
2 + c2 ln 2

j , (11)

with c1 = H − λ2/2 and c2 = −λ2.
In essence, the behavior of C1(2

j) across scales is dom-
inated by H ≫ λ2 and primarily describes the second-
order statistics of X , thereby capturing its global correlation
structure. Conversely, the behavior of C2(2

j) across scales,
controlled by λ, characterizes the multifractality of the texture,
i.e., the tight organization across space of local transient
structures, not accounted for by the correlation function.

These wavelet and wavelet-leader multiscale statistics,
C1(2

j) and C2(2
j), will be used here to assess the quality

of the diffusive network synthesized textures2.

2They are implemented using the documented toolbox available at
www.irit.fr/ Herwig.Wendt/software.html.

https://www.irit.fr/~Herwig.Wendt/software.html


It is important to note that multifractal characterization is
used solely to validate the quality of texture synthesis and not
for constructing the loss function used to train the diffusion
network. Thus, multifractal and scale-free properties are never
directly utilized to inform the diffusion network.

IV. EXPERIMENTAL METHODOLOGY

A. Training dataset

The training dataset comprises 1000 independent samples
of homogeneous univariate multifractal random walk (MRW)
textures, each of size 256 × 256, synthesized to exhibit
scale-free statistics and multifractal properties as defined in
Section III. These are generated using Matlab routines im-
plementing circulant matrix embedding [4], [22], with fixed
parameters: Hurst exponent H = 0.8, and multifractality
parameter λ2 = 0.01, set uniformly across samples for
consistent statistical characteristics.

B. Model Training

The diffusion model adheres to the classical DDPM frame-
work proposed by Ho et al. [3], utilizing 1000 timesteps and
a U-Net architecture for denoising. Training minimizes the
mean-squared error (MSE) loss between the predicted noise
ϵθ(xt, t) and actual noise ϵ, optimizing the reverse process
to reconstruct textures from noise. The model employs a U-
Net architecture inspired by ConvNeXt blocks to perform
the denoising process [23]. The U-Net follows an encoder-
decoder structure with skip connections, processing 256×256
images through progressive downsampling and upsampling
stages. The usage of ConvNeXt blocks enhances efficiency by
incorporating depthwise-separable convolutions and residual
connections with self-attention layers at lower resolutions to
capture long-range dependencies [24]. Sinusoidal positional
embeddings encode the diffusion timestep t, enabling adaptive
denoising [25]. Skip connections concatenate encoder and
decoder features, preserving fine details, and a final 1 × 1
convolution produces the denoised output.

Training was conducted on an AD102GL [RTX 6000
Ada Generation] GPU. We test four noise schedulers—linear,
cosine, quadratic, and sigmoid (Section II)—across 2000
epochs with Adam (learning rate 0.0002, batch size 32). Each
scheduler was trained independently to synthesize multifractal
properties.

C. Evaluation Metrics

To evaluate the quality of textures synthesized by the diffu-
sion model, we employ multifractal analysis metrics defined
in Section III. Specifically, we compute the first and second
cumulants of the logarithm of wavelet leaders, C1(j) and
C2(j), across scales 2j , for both the original training dataset
(1000 MRW textures with H = 0.8, λ2 = 0.01) and the
generated textures. We assess the fidelity of these scaling
properties through two complementary approaches:

1) We plot the averaged C1(j) and C2(j) curves for both
the original and generated textures across scales. These
plots allow us to qualitatively assess whether the scaling

behavior of the generated textures aligns with that of the
original dataset.

2) To provide a quantitative measure of the multifractal
properties, we estimate the slopes ĉ1 and ĉ2 from linear
regressions of C1(j) and C2(j) across scales 2j1 = 2 to
2j1 = 4, respectively. We then calculate the mean and
standard deviation of these estimated slopes across 1000
samples for both the original and generated textures.
These statistics allow us to assess how well the generated
textures reproduce the multifractal scaling properties of
the original dataset.

V. RESULTS AND DISCUSSION

This section presents the outcomes of synthesizing multi-
fractal textures using the diffusion model. Figure 1 displays
representative texture samples: (a) a training sample, and
generated samples for (b) linear, (c) cosine, (d) quadratic,
and (e) sigmoid schedulers. Visually, the linear, cosine, and
sigmoid schedulers produce textures that are visually similar to
that of the training sample. Conversely, the quadratic scheduler
yields visually very different textures, indicating potential
challenges in preserving texture coherence.

Figure 2 reports the functions C1(j) and C2(j) as functions
of scales for the training (blue) and diffusion network gener-
ated sets, with theoretical slopes (dashed black) at c1 = 0.795
and c2 = −0.01. These functions are obtained as averages
across 1000 sample textures, also yielding confidence inter-
vals. To enhance readability, the functions C1(j) and C2(j)
for each scheduler are shifted by 0.05 on the x-axis.

Table I summarizes the means and standard deviations of ĉ1
and ĉ2, estimated by linear regressions across scales 2j1 = 2 to
2j1 = 4, averaged over 1000 samples, for the training data and
for diffusion model textures generated by different schedulers.

For C1(j), the training data starts around −1.55 at scale
21 and increases steadily to 1.61 by scale 25, with a slope
closely aligning with the theoretical value of 0.795 (dashed
black line). The linear scheduler (red) begins at −1.51 and
rises to 1.58, with estimated clinear1 = 0.799, closely repro-
ducing the function C1(2

j) from the training set, with small
standard deviations, indicating consistent synthesis. Moreover,
the standard deviations for the linear scheduler are slightly
smaller but comparable in magnitude to those of the training
set. Interestingly, this shows that the linear noise scheduler
not only reproduces the global scaling property on average
but also in distribution, i.e., in variability across samples.

The sigmoid (green) and cosine (yellow) schedulers start at
−1.73 and −1.61 respectively, rising more gradually to 1.90
and 1.84 by scale 25, suggesting a slight overestimation of
the scaling behavior compared to the training data, ĉsigmoid

1 =
0.94 and ĉcosine1 = 0.87. The quadratic scheduler (cyan) starts
at −1.5391 and increases more steeply to 1.9128 by scale 25,
yielding ĉquadratic1 = 0.92, with larger standard deviations,
indicating higher variability and potential instability.

For C2(j), the training data yields a decline across scales
with slope ĉtraining2 = −0.010 very much in agreement with
the theoretical c2 = −0.01.



Fig. 1: Texture samples. (a) Sample from the training dataset. Diffusion model generated samples, using different noise
schedulers: (b) Linear, (c) Cosine, (d) Quadratic, (e) Sigmoid.

Fig. 2: Cumulants C1(2
j) and C2(2

j) as functions of
scales, averaged across the training set (blue) and diffusion
model generated texture sets, obtained from different noise
schedulers. Top: C1(2

j). Bottom: C2(2
j). The dashed black

line materializes the theoretical scaling behavior across scales.

The linear scheduler produces a function C2(j) that de-
creases across scale with a slope ĉLinear

2 = −0.004, which in-
dicates that multifractality is actually induced in the diffusion
model generated textures, yet with a slightly lower intensity
compared to the expected one or to the one estimated from the

training set. Notably, the standard estimation across diffusion
model generated samples is of the same order of magnitude
as that obtained from the training set, showing that diffusion
models not only reproduce the multifractality parameter on
average, but also in variability across samples.

Interestingly, the other noise schedulers introduce multifrac-
tality in textures, with the sigmoid scheduler (ĉ2 = −0.0066)
closely matching the training slope of −0.010, while the
cosine (ĉ2 = −0.0036) and quadratic (ĉ2 = −0.0209) sched-
ulers underestimate and overestimate it, respectively. Their
standard deviations (0.0095, 0.0088, 0.0103) remain similar
to the training set’s 0.0119.

The variations in the reproduction of C1(j) across sched-
ulers highlight the nuanced impact of noise scheduling strate-
gies on texture synthesis outcomes. Specifically, the linear
scheduler’s fidelity to the training data and its low variability
suggest that it is well-suited for applications requiring precise
preservation of global scaling properties. In contrast, the other
schedulers overestimate the scaling behavior, making them less
suitable for such applications.

Furthermore, the variations in the reproduction of C2(j)
across schedulers underscore the challenges of capturing
multifractality through noise scheduling strategies in texture
synthesis. While the linear scheduler struggles to fully match
the training data’s multifractal intensity, it nonetheless demon-
strates a more balanced performance across both average
multifractality and variability. As a result, the linear scheduler
emerges as the better choice on average for applications
requiring controlled multifractal texture synthesis.

TABLE I: Means and standard deviations of ĉ1 and ĉ2,
averaged over 1000 realizations for the training and for the
diffusion model generated texture sets.

Dataset ĉ1 ĉ2
Mean Std Mean Std

Training 0.7950 0.0394 -0.0101 0.0119
Sigmoid 0.9378 0.0351 -0.0066 0.0095
Linear 0.7994 0.0335 -0.0036 0.0093
Cosine 0.8686 0.0364 -0.0036 0.0088
Quadratic 0.9166 0.0341 -0.0209 0.0103

VI. CONCLUSION

This study explored the capability of diffusion neural net-
works to synthesize multifractal textures, leveraging a U-
Net-based model trained on 1000 univariate MRW textures



under four noise schedulers—linear, cosine, quadratic, and
sigmoid. We targeted textures with complex, scale-invariant
dynamics, assessed via wavelet-leader multifractal statistics
(C1(j), C2(j)) and their moments, without embedding such
properties in the training loss. among the schedulers tested, the
linear scheduler demonstrated the best performance, both cor-
rectly reproducing global correlations (C1(2

j)), and generating
multifractality (C2(2

j)), yet so far not perfectly. These findings
highlight the potential of diffusion models for synthesizing
texture, yet suggest room for improvement. Future work will
extend this approach to multivariate multifractal textures or to
textures combining multifractal properties with anisotropy and
design specialized diffusion architectures to better handle their
intricate statistical structures.
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