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Diffusion Models

» Diffusion models, inspired by thermodynamics [1], generate data by reversing a
noise-adding process.

» Denoising diffusion probabilistic models (DDPM) [2] uses a Markov chain to add
Gaussian noise over T steps, transforming data into noise, then trains a U-Net to
denoise it back.

Forward Process: Adds noise iteratively:

q(xe|xt—1) = N(xt; /1 — Bixe—1, Bil) (1)
Reverse Process: Learns to denoise:
Po(Xt—1]Xt) = N (Xt—1; po( X, 1), Lo(Xt, 1)) (2)
Training Loss: Minimizes noise prediction error:
L =Etxe [le — eolxe, D)|°] (3)
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Figure: Forward and reverse diffusion process in DDPM (Source: Ho et al., 2020).
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Figure: Block diagram of a diffusion model, showing the training phase (left) where noise is added to input images and the
model learns to denoise, and the sampling phase (right) where images are generated from pure noise using the trained model.
Equations describe key steps, including the forward process, loss, and reverse process (DDPM).
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Figure: Traditional noise schedulers used in DDPM

Training Configuration

» Based on DDPM [2] with 1000 timesteps, the model trains a U-Net to minimize MSE
loss between predicted noise ¢y(X;, t) and actual noise ¢, reconstructing 256 x 256
textures.

» Training: 2000 epochs, Adam (Ir=0.0002, batch=32) on AD102GL [RTX 6000 Ada]
GPU. Tested linear, cosine, quadratic, and sigmoid noise schedulers, trained
independently per scheduler.
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Figure: U-NET with ResNet Blocks
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Conclusion and Future Work

» This study explored diffusion neural networks’ capability to synthesize multifractal
textures using a U-Net trained on 1000 univariate MRW textures with linear, cosine,
quadratic, and sigmoid schedulers.

» Texture quality was assessed via wavelet-leader statistics Cy(j) and Cs(J), without
embedding these in the loss.

> The linear scheduler slightly outperformed others, effectively reproducing global
correlations (C¢(2/)) and multifractality (Co(2/)).

Future Work: Extend to multivariate multifractal textures or those with anisotropy.
Design specialized diffusion architectures to better handle complex statistical
structures.

Multifractal Textures

» Multifractal Random Walks (MRW) [3, 4] model real-world textures with scale-free
statistics [5]. Defined as:

X(r) = Gu(r)e"), (4)

where Gy(r) (2D-fGn, Hurst exponent H) and wy(r) (covariance Cyrr = M2 log (||LHL+1)’
parameter )\) induce multifractality.

» Analysis: Wavelet coefficients {dx(/, k)} and leaders L(j, k) yield cumulants:
Ci(2)=c¥+¢In2, C2)=c?+cin?, (5)

with c; = H — )\?/2, ¢, = —)\?, measuring global correlations and multifractality.

» Evaluates texture quality using multifractal analysis, computing cumulants C;(j) and
Cs(j) of wavelet leader logarithms across scales 2/ for 1000 original MRW textures
(H = 0.8, \? = 0.04) and generated textures.

» Qualitative: Plots averaged C;i(j) and Cy(j) curves to assess scaling behavior
alignment between original and generated textures.

» Quantitative: Estimates slopes ¢; and ¢, from linear regressions of C;(j) and Cx(j)
over scales 22 to 24. Calculates mean and standard deviation of slopes across 1000
samples to quantify multifractal scaling fidelity.
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Figure: Texture Samples. A sample from the training dataset alongside diffusion model-generated samples using linear,
cosine, quadratic, and sigmoid noise schedulers.
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Figure: Cumulants C;(2/) and C,(2/) as functions of scales, averaged across the training set (blue) and diffusion
model generated texture sets, obtained from different noise schedulers. Top: C;(2/). Bottom: Cy(2/). The dashed black line
materializes the theoretical scaling behavior across scales.

Table: Means and standard deviations of ¢; and ¢,
averaged over 1000 realizations for the training and for
the diffusion model generated texture sets.

Dataset C Co
Mean | Std Mean Std
0.8109 | 0.0588 | -0.0386 | 0.0242
0.7924 | 0.0431 | -0.0459 | 0.0190
Linear 0.7989 | 0.0438 | -0.0417 | 0.0208
Cosine 0.7901 | 0.0361 |-0.0420 | 0.0141
L Quadratic | 0.7851 | 0.0631 | -0.0423 | 0.0241
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Figure: Cumulant C2 Per Epoch
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