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Abstract—Miniaturized CMOS hyperspectral cameras utiliz-
ing Fabry-Perot Interferometers (FPIs) have emerged as a
low-cost solution providing fast-acquisition miniaturized sen-
sors well-suited for both in-field analysis and remote sensing.
However, FPIs generate harmonics around each wavelength
of interest, hindering the accuracy and reliability of spectral
information. This paper proposes a novel scene-dependent
spectral correction and calibration method for miniaturized
CMOS hyperspectral cameras using FPI technology. Unlike the
manufacturer’s scene-independent spectral correction matrix,
our approach utilizes deconvolution with Tikhonov regulariza-
tion weighted by the entropy of the Fabry-Perot harmonics
to remove the generated artifacts and restore the original
spectra. It adapts to the scene’s unique characteristics, reduc-
ing harmonics and improving hyperspectral data quality. The
experiments on synthetic data and real images acquired by an
FPI sensor demonstrate the superiority of our method in re-
moving harmonic distortions and achieving improved accuracy
in spectral calibration.

Index Terms—Sensor signal processing, Hyperspectral Imaging,
CMOS sensors, Fabry-Perot, Calibration, Spectral Correction.

I. INTRODUCTION

Hyperspectral imaging (HSI) is a powerful tool that captures a scene
spectral reflectance at multiple wavelengths enabling applications in
various fields [1]. Traditional hyperspectral cameras have significant
drawbacks, such as high cost, bulky size, and limited spatial resolution,
making them less suitable for applications that require mobility
and rapid data acquisition [2]. Therefore, miniaturized CMOS
hyperspectral cameras based on Fabry-Perot interferometer (FPI)
have emerged as a low-cost, fast-acquisition, and portable solution
for HSI [3]–[5]. FPI is a widely used tool for spectral filtering in
optical systems. Spectral cameras using FPIs have been developed by
integrating them monolithically on top of CMOS image sensors. The
filter’s cavity length and mirror reflectivity determine the selected
wavelength and spectral bandwidth respectively. In addition, using
CMOS process technology reduces cost and improves the compactness
of hyperspectral cameras. Thus, enabling multiple applications in
agriculture, autonomous driving, and surveillance.

The filter layout describes the pattern in which the filters are
deposited on the sensor, and currently, major designs are Linescan
Wedge and Snapshot Mosaic. There are variations for each layout,
depending on the type, the active range of the sensor and the
number of different filters in the layout [6]. Ideally, an FPI would
efficiently transmit light within a narrow spectral range to the
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sensor while blocking light outside this range. However, FPIs exhibit
additional harmonic responses around each desired wavelength in
practical implementations. Moreover, CMOS cameras encounter
various impurities, such as spectral leaking, spectral shifting, cross-
talk in the snapshot mosaic cameras [7]. These issues were solved by
the camera manufacturer. Specifically, it proposes a scene-independent
spectral correction matrix to suppress the FPI second-order harmonics.
This method, however, is not always practical, as it does not consider
the unique characteristics of the observed scene. Furthermore, we
proposed in [8] an accurate endmember estimation technique which
deconvolves FPI “pure patches”. As it is working on raw data, the
above spectral correction matrix cannot be applied.

This paper presents our novel contribution to the field, a
scene-dependent spectral correction and calibration method for
miniaturized CMOS hyperspectral cameras using FPI technology.
By leveraging the deconvolution of the sensor response matrix with
entropy-weighted Tikhonov regularization, our approach effectively
suppresses harmonics and cross-talk and enhances the quality of
hyperspectral data. It is worth noting that spectral reconstruction
encompasses various applications, i.e., spectral reconstruction from
a limited set of measurements [9]. Our main contribution focuses on
spectral correction, which involves converting raw digital numbers
(DN) from imaging sensors into physical quantities like reflectance
or radiance [10]. Experiments with synthetic data and real images
from both linescan wedge and snapshot mosaic IMEC sensors show
our method outperforms the manufacturer solution in eliminating
harmonics and enhancing spectral information.

The remainder of the paper is organized as follows: Section II
discusses image processing and spectral correction. Our method is
introduced in Section III, evaluated in Section IV, with conclusions
and future work in Section V.

II. RELATED WORK

Spectral cameras using FPIs have been developed by monolithically
integrating them on top of CMOS image sensors resulting in two major
designs used in commercially available cameras, i.e., Linescan Wedge
[5] and Snapshot Mosaic [3]. The linescan wedge design segments
the sensor into : bandlets, each a unique FPI capturing varied spectral
scene data arranged in an increasing cavity height, forming a discrete
wedge. To create the full datacube, raw images need to be stitched
together and aligned. [4]. The snapshot mosaic arranges filters per
pixel within a

√
: ×
√
: cell, extending the FPI for full sensor rage

[3]. A post-processing technique called “demosaicing” is required
to estimate the complete hyperspectral data cube [11], [12].

An FPI efficiently transmits light within a specific spectral range to
the sensor and blocks other light. However, FPIs also have additional
harmonic responses at desired wavelengths. Cameras face challenges
like spectral leakage, shifting, and CMOS imager performance
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Fig. 1. Image processing pipeline for snapshot spectral and linescan
cameras (Single Image Demosaicing vs. Multi-Image Stitching).

variations, necessitating pre-processing and post-processing for high-
quality images [6], [7]. First, a rejection filter conditions the incident
light, blocking wavelengths outside the sensor’s active range to
prevent spectral leakage and second-order responses [6]. Then, dark
level correction (bias correction) is applied by subtracting a “dark
image” from the raw image to remove sensor noise and offset,
with this reference image captured with the lens closed. While the
rejection filters remove most undesired wavelengths, some persist
within the sensor active range, thus requiring spectral correction. The
latter is performed by applying a fixed—i.e., scene-independent—
correction matrix denoted C which is determined through a process
of minimizing the difference between the actual band response,
denoted as the response matrix H, and the desired or ideal band
response, represented as Hideal. This minimization process is expressed
mathematically as [13]

min
C
‖Hideal − C ·H‖2F, (1)

where ‖·‖2F denotes the Frobenius norm. To effectively apply this
correction matrix, it typically requires the calculation of reflectance
using a white reference [6]. The correction matrix C serves to
transform physical wavelengths—as captured by the camera sensor—
into virtual wavelengths, representing the spectrally-corrected data.
The number of virtual bands is often less than that of the physical
bands. Such discrepancies may arise from strong correlations among
the responses of specific physical bands or from a lack of signal
captured by one or more physical bands [6]. Furthermore, we
note that the response matrix H, which forms the foundation
of our proposed framework, has crucial information about filter
characteristics—including first and second-order responses—and the
full width of response peaks at half the maximum of the peak
(FWHM). By multiplying this matrix with an irradiance spectrum,
we simulate the sensor response, thereby facilitating evaluations
under realistic conditions. Angularity correction [14] adjusts for light
angle variability, while non-uniformity correction addresses sensor
discrepancies. Fig. 1 shows the processing pipeline of the images
with the steps mentioned above.

Beyond the physical design and correction challenges of compact
spectral cameras, entropy allows to quantify the level of information in
a given system. Consider a 3-dimensional probability vector, denoted
as p = (?1, ?2, . . . , ?3)) where each ?8 represents the probability
of the 8Cℎ event occurring in a 3-dimensional probability space. The
entropy of the vector p is defined as:

� (p) = −
3∑
8

?8 · log(?8). (2)

The entropy here quantifies the uncertainty in p’s values, peaking
when p’s distribution is consistent across all events and minimizing
when one event dominates with near certainty [15].

Given the harmonics of the FPI shown in Fig. 2, the entropy of
FPI harmonics is high with multiple peaks in the band response and
near zero with a single peak. Incorporating this information into the
deconvolution problem allows us to effectively control the level of
smoothness required for the corrected spectrum.
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(a) Entropy = 0.54
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(b) Entropy = 0.04

Fig. 2. Fabry-Perot filter responses for different bands of the linescan
camera. On the left: 805 nm. On the right: 650 nm.

III. PROPOSED SPECTRAL CORRECTION METHOD

In our spectral imaging context, after the process of demosaicing
or stitching, we encounter a datacube where each spatial pixel is a
: × 1 vector z with : representing the number of wavelengths, i.e.,

z = H · x. (3)

Here, H is the response matrix with dimensions : × @ where @

is the number of measurement points used during the calibration
of the sensor and x is the original spectrum that we intend to see
in each pixel. In practice, @ = 601 as the manufacturer samples
responses at every 1 nm interval within the range of 400–1000 nm.
The primary challenge we encounter is the estimation of the vector
x based on the observed spectral pixel vector z and the response
matrix H. However, due to the available dimensions, estimating x
is an under-determined problem. Additionally, the use of the cut-off
filter results in the blocking of harmonics outside the sensor’s active
range, making the matrix H not suitable for the retrieval process. To
address this, we propose to reduce the size of the matrix H to retain
only the applicable information. This reduction is achieved through
a strategic sampling of the matrix H, keeping values corresponding
to virtual wavelengths that carry the most relevant information of
the sensor, while accounting for contributions from harmonics and
cross-talk, as depicted in Fig. 3.

Subsequently, we perform a scaling operation on the rows of matrix
H to ensure that they sum to one. The sampled response matrix is
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(a) Photonfocus SSI 5 × 5 [16]
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(b) Ximea linescan 192 bands [17]

Fig. 3. Fabry-Perot filter responses (in blue) for one band from lines-
can and SSI cameras with highlighted virtual wavelengths (in red)

denoted as HS and has dimensions : × <, where < represents the
number of virtual wavelengths. Thereafter, the size of the vector x
is adjusted to < × 1 and is referred to as y for clarity. To obtain y,
we aim to solve a nonnegative least-squares problem, i.e.,

min
y≥0

1
2
‖z − HS · y‖22 +

U

2
· ‖� · y‖22 +

U

2
· R(HS, y), (4)

where R(HS, y) is a regularization term defined as

R(HS, y) = ‖� (HS) · � · y‖22, (5)

where � (HS) is diagonal matrix which accounts for the entropy of
each column of the matrix HS as follows:

� (HS) =


−
:∑
;=1
HS;, 9 · log(HS;, 9) if 8 = 9 ,

0 otherwise.
(6)

Here, 8 and 9 are the row and column indices. The function R(HS, y)
particularly employes the entropy on the matrix HS and Tikhonov
regularization on the vector y, denoted as � ·y. The latter is a square
matrix that accounts for the discrete derivative of the spectrum y.

The entropy is applied to each column of the matrix HS to
automatically determine the degree of smoothness required in the
estimation. In practice, it can be interpreted as follows: when the
band response exhibits multiple peaks, the resulting matrix HS can be
ill-conditioned, as most of its values will tend to be near zero. This
situation results in a high entropy indicating a need for increased
smoothness regularization. Conversely, when there is only a single
peak, the entropy is zero, signifying that no additional penalization for
smoothness is necessary. In summary, this method combines entropy
regularization on the matrix HS and Tikhonov regularization on the
vector y, effectively balancing data fidelity and the desired level of
smoothness in the estimated spectrum1. This approach ensures an
adaptive optimization process for recovering y, and we refer to it as
“Scene-Dependent Spectral Correction” (SDS-Cor).

Finally, in the context of our proposed method, the possibility of
doing super-resolution appears when considering scenarios without
cut-off filters. In such cases, the full informational content of the
harmonics in the response matrix H can be exploited for “super-
spectral” resolution enhancement. This approach involves utilizing
the extended range of harmonics data in matrix H to increase the
spectral detail beyond the standard resolution. Our inverse problem

1Including the non-entropy-weighted regularization term ‖� · y‖22 ensures ro-
bustness in scenarios where entropy is zero. This case is rare, but this addition
makes our method more general. Still, we found in preliminary tests that adding
or removing this term does not significantly affect the achieved results.
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Fig. 4. Reached SAM values vs the value of U and the input SNR.
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Fig. 5. Results on synthetic simulation used USGS spectral data

framework is well-suited to exploit this opportunity. By changing the
dimensions of H and accordingly adjusting our spectral estimation
process, we can effectively enhance the resolution of the spectral
data. While this is not the core of the proposed paper, this point is
also briefly investigated in the next section.

IV. EXPERIMENTS AND RESULTS

We conducted experiments to evaluate the effectiveness of our
proposed method using synthetic simulations, and real images.

The synthetic experiment evaluated the spectral responses of water,
metal, and concrete using spectral signatures from [18] and the
response matrices of the Snapshot Mosaic [16] and Linescan Wedge
cameras [17]. We simulated sensor responses to these materials,
applied both our proposed and IMEC’s correction methods [13],
and assessed them by comparing the Spectral Angle Mapper (SAM)
between corrected and original spectra under varying noise levels.

However, we first study the impact of the regularization parameter
U on the NNLS problem. Fig. 4 shows how U affects the SAM
value at different noise levels for the linescan camera. Optimal SAM
values are obtained with U = 10−4 in noiseless scenarios, while higher
noise requires larger U values to maintain deconvolution robustness.
Throughout this study, U = 10−4 was used for noiseless synthetic
experiments, with noise-specific optimal values determined from the
plot. For the real data experiment, we set U = 0.0014, assuming the
cameras to generate images with an input SNR equal to 40 dB.

Our comparative analysis shown in Fig. 5, evaluates the per-
formance across various noise levels and highlights the advantage
of incorporating entropy weighting into SDS-Cor method. The
comparison highlights SDS-Cor’s superiority to the IMEC method in
noisy and noise-free settings, showing greater fidelity to the original
spectra even in high-noise conditions.

To further evaluate the effectiveness of our proposed method, we
conducted experiments using a linescan camera [17]. The camera
captured images of colored papers in red, green, and blue under
natural sunlight. Subsequently, we measure the spectral information
of the colored papers and the lemons using an ASD FieldSpec 4
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Fig. 6. Spectral Correction and Analysis: Real Data and Super-
Resolution Insights from Linescan (LS) and Snapshot (SSI) Cameras

spectrometer2, serving as the reference dataset for our assessment.
We then applied our method and IMEC correction matrix to the
images and compared the corrected spectra with those obtained from
the spectrometer measurements. Figs. 6(a), 6(b), and 6(c) display the
restored spectra. Our proposed method outperforms the manufacturer
solution with the linescan camera despite facing challenges in the
spectral range between 600 and 700 nm, attributed to harmonics
from the Fabry-Perot filters.

Finally, our proposed method can be used to enhance the resolution
of hyperspectral imaging by performing super-resolution, starting
directly from the response matrix of the sensor. The snapshot sensor
[16] initially supported 25 distinct wavelengths within its active
range. Our primary objective was to interpolate and restore additional
spectral bands, mainly focusing on the midpoints between each pair
of successive bands. For instance, given that the sensor supports
bands at 650 nm and 680 nm, our first step was to accurately restore
the band at 665 nm, which lies precisely in the middle of these two
bands. This process was iteratively conducted for all available bands,
gradually increasing the number of restored bands. As we progressed,
the number of bands incrementally increased, reaching 49 bands.
This enhancement effectively doubled the original spectral resolution
of the sensor. To evaluate the effectiveness of this super-resolution
process, we utilized the SAM for each stage of the reconstruction as
the curve shows in Fig. 6(d). As the number of restored wavelengths
increases, we observe a corresponding increase in the SAM angle,
implying a reduction in the spectral reconstruction accuracy as shown
in Fig. 6(e). Still, without any additional assumption, multiplying
the spectral resolution by 24—i.e., expanding from 25 observed to
601 estimated bands—maintains a quite low SAM value (equal to
0.1). Fig. 6(f) shows the super-resolved spectrum of water in that
case. These results highlight the relevance of the proposed work.

V. CONCLUSION AND DISCUSSION

In this work we introduced SDS-Cor, i.e., a novel approach
developed to enhance spectral data correction in snapshot and
linescan cameras. In contrast to the scene-independent spectral

2See, e.g., https://www.malvernpanalytical.com/en/products/product-range/asd-
range/fieldspec-range/fieldspec4-hi-res-high-resolution-spectroradiometer.

correction matrix provided by the manufacturer, our approach
employs deconvolution techniques with entropy-weighted Tikhonov
regularization to eliminate the generated impurities. By adapting to
the specific attributes of the observed scene, SDS-Cor effectively
removes harmonics and improves the quality of hyperspectral data.
The experimental results on synthetic and real data demonstrated that
the proposed method outperformed the manufacturer’s solution even
in the presence of noise. Our future work will focus on improving
the method performance when the noise is introduced and expanding
method’s capabilities to address angularity correction simultaneously.
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de la Côte d’Opale. Experiments presented in this paper were carried out using the
CALCULCO computing platform, supported by ULCO. Cameras used in the experiments
were partly funded by ULCO and by FEDER within the HyperQSE project.

REFERENCES

[1] D. Manolakis, R. Lockwood, and T. Cooley, Hyperspectral Imaging Remote Sensing:
Physics, Sensors, and Algorithms. Cambridge University Press, 2016.

[2] J. G. Michael West and C. Galvan, “Commercial snapshot spectral imaging: The
art of the possible.” Available online at https://www.mitre.org/sites/default/files/
publications/pr-18-3832-commercial-snapshot-spectral-imaging-art-of-possible.
pdf. Last access: 08/26/2022., 2018.

[3] B. Geelen, N. Tack, and A. Lambrechts, “A compact snapshot multispectral imager
with a monolithically integrated per-pixel filter mosaic,” in Advanced Fabrication
Technologies for Micro/Nano Optics and Photonics VII (G. von Freymann, W. V.
Schoenfeld, and R. C. Rumpf, eds.), SPIE, 2014.

[4] P. Chatelain, G. Delmaire, A. Alboody, M. Puigt, and G. Roussel, “Semi-automatic
spectral image stitching for a compact hybrid linescan hyperspectral camera towards
near field remote monitoring of potato crop leaves,” Sensors, vol. 21, no. 22, 2021.

[5] N. Tack, A. Lambrechts, P. Soussan, and L. Haspeslagh, “A compact, high-speed,
and low-cost hyperspectral imager,” in Silicon Photonics VII, vol. 8266, p. 82660Q,
International Society for Optics and Photonics, 2012.

[6] IMEC, “Hyperspectral sensors user manual.” Available online at Support Portal
of imec https://www.imec-int.com/, 2019.

[7] K. Vunckx and W. Charle, “Accurate video-rate multi-spectral imaging using imec
snapshot sensors,” in Proc. IEEE WHISPERS’21, pp. 1–7, 2021.

[8] K. Abbas, M. Puigt, G. Delmaire, and G. Roussel, “Locally-rank-one-based joint
unmixing and demosaicing methods for snapshot spectral images. part ii: A
filtering-based framework,” IEEE Trans. Comput. Imaging, vol. 10, pp. 806–817,
2024.

[9] J. Zhang, R. Su, Q. Fu, W. Ren, F. Heide, and Y. Nie, “A survey on computational
spectral reconstruction methods from rgb to hyperspectral imaging,” Scientific
reports, vol. 12, no. 1, p. 11905, 2022.

[10] T. Goossens, B. Geelen, J. Pichette, A. Lambrechts, and C. Van Hoof, “Finite
aperture correction for spectral cameras with integrated thin-film Fabry–Perot
filters,” Applied optics, vol. 57, no. 26, pp. 7539–7549, 2018.

[11] J. Brauers and T. Aach, “A color filter array based multispectral camera,” in 12.
Workshop Farbbildverarbeitung (G. C. Group, ed.), (Ilmenau), October 5-6 2006.

[12] K. Abbas, M. Puigt, G. Delmaire, and G. Roussel, “Joint unmixing and demosaicing
methods for snapshot spectral images,” in Proc. IEEE ICASSP’23, 2023.

[13] J. Pichette, T. Goossens, K. Vunckx, and A. Lambrechts, “Hyperspectral calibration
method For CMOS-based hyperspectral sensors,” in Photonic Instrumentation
Engineering IV (Y. G. Soskind and C. Olson, eds.), vol. 10110, p. 101100H,
International Society for Optics and Photonics, SPIE, 2017.

[14] T. Goossens, K. Vunckx, A. Lambrechts, and C. V. Hoof, “Spectral shift correction
for fabry-perot based spectral cameras,” in Proc. IEEE WHISPERS, 2019.

[15] J. Liu, S. Yuan, X. Zhu, Y. Huang, and Q. Zhao, “Nonnegative matrix factorization
with entropy regularization for hyperspectral unmixing,” International Journal of
Remote Sensing, vol. 42, no. 16, pp. 6359–6390, 2021.

[16] Photonfocus, “Photonfocus snapshot mosaic camera cmv2k-
sm5x5.” https://www.photonfocus.com/products/camerafinder/camera/
mv0-d2048x1088-c01-hs02-160-g2/, Last accessed: 2023-08-07.

[17] XIMEA, “Ximea - hyperspectral linescan usb3 camera 150 bands 470-900nm.” https:
//www.ximea.com/en/products/hyperspectral-cameras-based-on-usb3-xispec/
mq022hg-im-ls150-visnir, 2023.

[18] “U.S. Geological Survey (USGS) spectral library.” https://www.usgs.gov/labs/
spectroscopy-lab/science/spectral-library, Last accessed: 2022-10-24.


